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HIGHLIGHTS

• Continuous-wave green vertical-cavity surface-emitting lasers based on self-formed quantum dots were realized with the lowest 
threshold current density of 51.97 A  cm−2.

• A short cavity (~4.0 λ, where λ is the wavelength in the media) was adopted to enhance the interaction between spontaneous emission 
and lasing mode, with a big coupling factor up to 0.094.

• AlN current confinement layer and the electroplated supporting copper plate were utilized to improve heat dissipation, with a low 
thermal resistance of 842 K  W−1.

ABSTRACT Room temperature low threshold lasing of green GaN-
based vertical cavity surface emitting laser (VCSEL) was demon-
strated under continuous wave (CW) operation. By using self-formed 
InGaN quantum dots (QDs) as the active region, the VCSEL emitting 
at 524.0 nm has a threshold current density of 51.97 A  cm−2, the low-
est ever reported. The QD epitaxial wafer featured with a high IQE of 
69.94% and the δ-function-like density of states plays an important role 
in achieving low threshold current. Besides, a short cavity of the device 
(~ 4.0 λ) is vital to enhance the spontaneous emission coupling factor 
to 0.094, increase the gain coefficient factor, and decrease the optical 
loss. To improve heat dissipation, AlN layer was used as the current 
confinement layer and electroplated copper plate was used to replace 
metal bonding. The results provide important guidance to achieving 
high performance GaN-based VCSELs. 
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1 Introduction

Vertical cavity surface emitting lasers (VCSELs) was 
proposed by K. Iga in 1977 [1] and, compared with edge 
emitting semiconductor lasers (EELs), have the character-
istics of circular beam, small size, low threshold, and easy 
integration etc. [2–4]. In the infrared spectral range, GaAs-
based VCSEL was commercialized in 1997 in mainly data 
communication systems [5]. In recent years, it has also 
become key devices in application fields [5] such as 3D 
perception and autonomous driving, and has received high 
attention from both the scientific research [6, 7] and the 
industry [8, 9] as well. In the visible spectral range, GaN-
based VCSELs are also in the spotlight of GaN optoelec-
tronic research because of their potential applications in 
visible light communication, biochemical sensing, high-
resolution laser printing/scanning, display, and data stor-
age [10–12]. In recent years, GaN-based VCSELs have 
been successfully demonstrated by both academic [13–17] 
and industrial [18–21] research groups. However, the 
reported GaN-based VCSELs are mainly in the violet and 
blue spectra region, and there are only a few reports about 
green VCSELs [22–27]. Two-dimensional (2D) InGaN 
quantum wells (QWs) are typically utilized as the active 
region for GaN-based VCSELs. For devices emitting in 
the green, InGaN QWs with higher indium (In) content 
are needed. However, increasing In content will lead to 
stronger quantum confinement Stark effect (QCSE) and a 
higher density of defects due to the large lattice mismatch 
between GaN and InGaN [28]. In addition, the large effec-
tive mass of carriers in the GaN-based material system 
results in a higher transparent carrier density, which is 
another limitation to achieving low threshold green GaN-
based VCSELs [29]. At present, the electrically injected 
green VCSELs based on c-plane InGaN QWs are only 
realized by Nichia in 2011 with double dielectric distrib-
uted Bragg reflector (DBR) structure [22], and in 2021 
with hybrid DBR structure [27], respectively. For their 
green VCSEL with hybrid DBR structure, lattice-matched 
AlInN/GaN DBR were grown on the c-plane GaN sub-
strate, and lasing at 514.9 nm with a threshold current den-
sity of 14.3 kA  cm−2 was realized [27]. On the other hand, 
growing InGaN QWs on semipolar or nonpolar GaN can 
decrease the QCSE and improve the emission efficiency 
in green spectral region [30, 31]. In 2020, Sony utilized 

(202 0) semipolar GaN substrate to grow InGaN/GaN 
MQWs and achieved lasing of green VCSEL at 515 nm, 
but the threshold current density is still relatively large of 
14.4 kA  cm−2 [26].

Using Quantum dots (QDs) as the active region is 
an effective approach to overcome problems associ-
ated with QWs [23, 24]. In the growth of QDs by Stran-
ski–Krastanow growth mode, the driving force of QD for-
mation is the strain existing in the film. The QD growth 
is accompanied by strain relaxation. Then, the piezoelec-
tric polarization field in the QD and the QCSE are almost 
eliminated [32]. QDs are zero-dimensional materials in 
which electrons and holes are well confined in a small 
space, thus forming the δ-function-like density of states, 
which is important for achieving low threshold current 
density [33–35]. Meanwhile, the strong localization effect 
of QDs can effectively prevent carriers from being cap-
tured by nonradiative recombination centers and improve 
the emission efficiency of the active region [36].

In our previous work, using QD-based active region, we 
successfully achieved low threshold green VCSELs emit-
ting from 491.8 to 565.7 nm, and the threshold current is 
in the order of sub-milliampere [24]. For those VCSELs, 
a  SiO2 insulator layer was used as current confinement 
and metal bonding was adopted to transfer the VCSEL 
structure on a copper (Cu) plate. Unfortunately, the  SiO2 
material with low thermal conductivity (1.5 W  mK−1) [37] 
can cause poor heat dissipation because it is located in the 
main pathway of thermal conduction [38]. In addition, the 
VCSEL with a metal bonding substrate also faces thermal 
dissipation problems because cracks and air voids or gaps 
are easily formed at the bonding interface [39–41]. Mean-
while, the long cavity (11 ~ 15 λ, where λ is the wavelength 
in the media) of device can also induces large scattering 
and absorption losses.

In this study, InGaN QD-based green VCSELs were fab-
ricated with optimized fabrication processes. The copper 
supporting plate of the device was directly formed by elec-
troplating process instead of metal bonding, and a buried 
AlN current confinement layer was utilized instead of  SiO2 
to improve the heat dissipation while maintaining current 
confinement properties. Simultaneously, due to the smaller 
refractive index of  SiO2 compared with GaN, positive opti-
cal guiding was realized [42]. The positive index-guiding 
structure also helps to suppress the lateral optical leakage 
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of the resonating modes. Moreover, a much shorter cavity 
(~ 4.0 λ) was used to further decrease the internal loss and 
enhance the spontaneous emission coupling factor. Finally, 
room temperature continuous-wave (CW) lasing with the 
lowest threshold current density of 51.97 A  cm−2 was real-
ized at 524 nm. These results provide a guideline for high 
performance green GaN-based VCSELs.

2  Materials and Fabrication

The epitaxial wafer was grown on a c-plane (0001) sapphire 
substrate by MOCVD system. The InGaN QD layers were 
grown as active region by the Stranski–Krastanow growth 
mode. In the growth process, Triethylgallium (TEGa) and 
Trimethylindium (TMIn) were used as precursors for Ga 
and In sources, respectively, for growing InGaN layers. 
Ammonia gas  (NH3) was used as precursor for N source. 
Hydrogen  (H2) was used as the carrier gas for growing GaN 

template, while nitrogen  (N2) for QDs. The InGaN QDs were 
deposited at 670 °C with a molar gas phase ratio, TMIn/
(TMIn + TEGa) of about 1:2, and the V/III ratio was set 
to be 1.35 ×  104. After the deposition of QDs, a two-step 
growth was used to grow the GaN cap layers. First, a 2-nm-
thick low-temperature grown GaN layer was deposited at the 
same growth temperature (670 °C) as QDs to protect them 
during subsequent temperature ramping process. Then, the 
temperature was ramped to 850 °C and an 8-nm-thick GaN 
barrier layer was grown. The active region consisted of two 
layers of InGaN/GaN QDs, the indium content of InGaN 
QDs is about 0.27. The Cross-section Z-contrast scanning 
transmission electron microscopy (STEM) shows a truncated 
pyramid shape of QD, which is a typical shape of QD grown 
by MOCVD [43]. The diameter ranges of QD from 20 to 
60 nm with an average height of 2.5 nm, while the QD den-
sity is ~ 1.5 ×  1010  cm−2 [43].

Figure 1a shows the 5 × 5 μm2 atomic force microscope 
(AFM) image of the uncapped InGaN QDs, which are 

Fig. 1  a 5 × 5 μm2 AFM image of the uncapped InGaN QD layer. b CL spectra from light spot A and other regions of the QD sample, inset 
shows the CL image at 4 K. c PL emission spectra of QD epitaxial wafer at 300 K. d Normalized integrated PL intensity as a function of 1/T for 
the InGaN QD emission
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perfectly aligned along the step edge. The light-emission 
properties of the QD wafer were also studied using spatially 
resolved spot-focus cathodoluminescence (CL) at low tem-
perature (4 K), and CL spectra were measured through the 
5-μm diameter apertures of a metal mask. For the CL image 
shown Fig. 1b, there is just only one QD, spot A. The diam-
eter of bright spot A in the CL image is about 100 nm. The 
emission from spot A is narrower than the emission from 
“other region” where many dots are included. It is of course 
much narrower than the emission from an even large area 
(Fig. 1c). These sharp peaks show a δ-function-like emission 
line that are believed to come from the QD-like structure. 
The photoluminescence (PL) spectrum of the epitaxial wafer 
was measured under excitation of a diode laser (λ = 405 nm) 
at 300 K, which is depicted in Fig. 1c. The spontaneous 
emission of the QDs starts from 450 nm and ends at 600 nm, 
have a much wider FWHM (~ 43 nm) than QW. The broad 
spontaneous emission spectra are caused by the fluctuation 
of the indium content and the inhomogeneous size of the 
QDs. Figure 1d shows the normalized integrated emission 
intensities as a function of the reciprocal temperature for 
the QD sample. At lower temperature (3.2–30 K), the PL 
intensity was relatively large because the non-radiative 
recombination centers are frozen and inactivated, and con-
sider that the internal quantum efficiency (IQE) is 100% at 
that temperature [44–47]. As the temperature rises, the PL 
intensity became smaller due to the non-radiative centers are 
thermally activated. The IQE was defined as the ratio of the 
integrated PL intensity at 300 and 15 K in this work, which 
has a relatively large IQE of 69.94%.

The QD epitaxial wafer featured with a large localization 
energy and a δ-function-like density of states, which bring 
about many advantages than QWs [48]. For example, the 
QDs have a higher differential gain than QWs, benefitting 
low-threshold lasing [49, 50]. In addition, the self-formed 
InGaN/GaN QDs are characterized by nearly zero internal 
electric field (then almost no QCSE) and consequently a 
higher electron–hole recombination probability [51, 52]. 
These effects have been demonstrated previously both theo-
retically [32, 53] and experimentally [49, 54]. Moreover, 
the increased confinement restrains carrier diffusion, making 
electrons and holes less susceptible to nonradiative recom-
bination centers induced by defects [55]. Therefore, the 
emission and IQE are enhanced (~ 69.94%). These superior 
advantages of InGaN QD are very important to realize a low 
threshold current of VCSEL.

The device structure of the VCSEL with a Cu supporting 
plate and dual dielectric DBRs is illustrated in Fig. 2. To fab-
ricate the device, the p-GaN mesa with a diameter of 7 μm 
was firstly formed by inductively coupled plasma (ICP) etch-
ing. Secondly, an AlN insulating layer with 75 nm thickness 
was deposited by magnetron sputtering around the p-GaN 
mesa to form a current-confinement structure. To realize an 
intra-cavity contact structure, an Indium Tin Oxide (ITO) 
layer was evaporated on the upper surface of AlN confine-
ment layer and p-GaN as a current spreading layer. Then, 
12.5 pairs of  TiO2/SiO2 bottom DBR were deposited and 
patterned. Subsequently, the Cr/Au p-electrode was depos-
ited, and then a copper layer (~ 205 μm) was electroplated as 
the new supporting plate. After that, the sapphire substrate 
was detached by laser lift-off (LLO), and the n-side epilay-
ers were thinned by ICP and chemical mechanical polishing 
(CMP). The device mesa was formed by ICP etching, after 
which the n-contact layer (Cr/Au) and 8 pairs of  TiO2/SiO2 
top dielectric DBR were finally deposited (For detailed fab-
rication of VCSEL, see Supplementary Information). The 
scanning electron microscope (SEM) of the devices was 
shown in Fig. 3a, b. The length and width of the device are 
160 and 100 μm, respectively. Figure 3c is a focus ion beam 
(FIB) cross-section image, showing the sub-micron cavity 
between the top and bottom DBR. The current spreading 
ITO layer extending to the inner-cavity, and the AlN current 
confinement layer are clearly identified. The cooper plate 
exhibits good compactness without cracks compared with 
metal bonding, which ensures the heat dissipation perfor-
mance of VCSEL.

Fig. 2  Schematic diagram of the GaN-based VCSEL with InGaN 
QD active region
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3  Results and Discussion

The optical characteristics of the device were measured 
under CW bias currents at RT. Figure 4a shows the elec-
troluminescence (EL) spectra of the device under differ-
ent injection currents. The spectra under smaller currents 
were numerically amplified for clarity. The wavelength 
of the main longitudinal mode is 524.0 nm and the inten-
sity increases nonlinear with increasing current. Besides, 
another longitudinal-mode-related peak can be observed 
at 576.5 nm, the longitudinal mode spacing is 52.5 nm. 
The measurement results (See Supplementary Informa-
tion) show that an average thickness of 879 nm of cavity 
(~ 4.0 λ). To better study the spectral variation at differ-
ent currents, the normalized EL intensity was plotted in 
Fig. 4b. Below threshold, strong spontaneous emission can 
be observed from the spectrum. As the current increases, 
the evolution of spectra shows a transition from spontane-
ous emission to stimulated emission. Above threshold, the 
main mode at ~ 524.0 nm is gradually dominant with the 
suppression of spontaneous emission and the side modes. 

Figure 4c shows the EL intensity as a function of the cur-
rent, which exhibits a threshold behavior at a low cur-
rent of 20 μA (corresponding a current density ~ 51.97 A 
 cm−2). The polarization characteristics of the VCSEL are 
shown in Fig. 4d, and a degree polarization of 84.74% 
under 200 μA was obtained, which is another evidence of 
lasing. Figure 4e shows the typical current–voltage (I–V) 
characteristics of the devices, and a turn-on voltage of 
3.84 V is obtained.

Apart from QDs, the short cavity length is also critical 
in achieving low threshold lasing of InGaN QD VCSELs. 
The related physical mechanism can be attributed to the 
enhancement of the spontaneous emission coupling factor 
and the decrease of internal absorption loss. The spontane-
ous emission coupling factor can be significantly enhanced 
by 7.7 times when the cavity length was thinned from 18 
to 6 λ in our previous work [56]. The spontaneous emis-
sion coupling factor (β) can be defined as the fraction of 
spontaneous emission coupled into a cavity mode with 
respect to the spontaneous emission into all modes [57], 
and depends on the Purcell factor of the cavity [56]:

Fig. 3  SEM image of the devices with different magnifications: a  50×, b  300×. c FIB cross-section SEM image of devices
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where Purcell factor Fp relates to the cavity length [56, 58]:

where R, Lc, and αi represent the reflectivity of top/bottom 
DBR (> 99.5%), cavity length, and absorption of VCSEL, 

(1)� =
Fp

1 + Fp

(2)Fp ∝
1[

ln
(
R
1
R
2

)1∕ 2
+ Lc�i

]

respectively. The equations indicate that a shorter cavity 
length can benefits the β.

To extract the spontaneous emission coupling factor of 
the QD VCSEL here, the EL intensity versus the injec-
tion current was plotted in a double-logarithmic scale, as 
shown in Fig. 5a. The typical ‘S’ shape of the I-L curve 
includes the spontaneous emission (SE) region, the ampli-
fied SE (ASE) region, and the lasing region, which denote 
a standard lasing evolution process. The β was calculated 

Fig. 4  RT-CW lasing characteristics. a The amplified EL and b normalized EL spectra at different currents. c EL intensities as a function of 
currents. d Normalized EL intensities with varying angles of polarizer at 200 μA. e I‑V characteristics of the VCSEL under CW operation at 
300 K (The spectra with different currents in a and b are offset along the y-axis for clarity)
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to be 0.094, which is a large value for electrically injected 
VCSELs. The β of typical electrically injected VCSELs 
and EELs are normally about  10–3 and  10–5 [59–62], 
respectively. With the increasing value of β, the laser will 
be thresholdless when β is equal to 1 [57]. The value of 
0.094 (94 ×  10–3) means that 94 photons out of  103 sponta-
neously emitted photons are coupled to a lasing mode and 
serve as a ‘seed’ for oscillation [63]. That is to say, a large 
β indicates that more spontaneous photons can be incor-
porated into the lasing mode, thus reducing the threshold 
current [64].

The short cavity in this study is also helpful in reducing 
internal optical loss, and the positive optical guiding effect 
is beneficial to reduce diffraction loss. Meanwhile, a short 
cavity can also enhance the gain coefficient factor (κ). The 
factor (κ) can be expressed as follow [56]:

where γ is the FWHM of the spontaneous emission without 
cavity, n is the refractive index of the resonant cavity, and 
Δυc is the frequency spacing between longitudinal modes. 
Consequently, the gain coefficient factor (κ) can be derived 
as:

From the equation, the decreased cavity length can 
enhance the gain coefficient factor. Compared with our 
previous VCSELs (with a cavity length of about 2–3 μm) 

(3)

⎧⎪⎨⎪⎩

� ≈
2Δ�c

��

Δ�c ≈
c

2nLc

(4)� ≈
c

n��Lc

[24], the shorter cavity length (879 nm) in this work can 
increase the gain coefficient factor several times. Owing 
to a much shorter cavity, the decreased internal absorption 
loss, as well as the enhancement of spontaneous emission 
coupling factor and gain coefficient factor are achieved. 
All these are essential for low-threshold lasing.

The threshold current densities and lasing wavelengths 
of green VCSELs from different research groups are sum-
marized in Fig. 5b. The threshold current density in this 
work is significantly lower than previously reported val-
ues. Compared with devices using InGaN QWs as the 
active region, the threshold current is reduced for more 
than two orders after using QDs. The VCSEL with a 7 μm 
diameter current aperture has a corresponding threshold 
current density of 51.97 A  cm−2, which is a low value 
among the ever-reported GaN-based VCSELs [22–27], 
indicating the high potential of QDs.

Heat dissipation also plays an important role in deter-
mining properties of GaN-based VCSELs. High junction 
temperature can easily deteriorate material gain and device 
performance, eventually affecting the threshold current, 
emission spectrum, etc. [65, 66]. To improve thermal dis-
sipation, an AlN current confinement layer with a higher 
thermal conductivity of (~ 200  W  mK−1) [38] is used 
instead of  SiO2 (1.5 W  mK−1). In addition, the electro-
plated copper plate in this work can further promote heat 
conduction from the AlN layer to the heat sink. Unlike the 
metal bonding in our previous work [23, 24], the electro-
plated copper is uniform and dense, which can avoid the 
formation of cracks, air holes or gaps occurring easily in 
a bonding process [30, 67].

Fig. 5  a EL intensity versus injection current in double logarithmic scale. b Threshold current densities and wavelengths of ever-reported elec-
trically injected green GaN-based VCSELs so far
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To study the improvement of thermal dissipation, a 
steady-state quasi-3D heat dissipation model was used to 
calculate the temperature distribution of the VCSEL. Fig-
ure 6a shows the thermal profile of the device studied here 
with using the electroplated copper plate and AlN current 
confinement layer (defined as Structure A). For compar-
ison, a VCSEL with a bonded copper substrate (Cu-Sn 
bonding) and  SiO2 current confinement layer (defined as 
Structure B) was also studied, as shown in Fig. 6b. Each 
active region was set to be a heat source with a heat power 
of 8 mW (heat density ~ 4.16 ×  1015 W  m−3) during simula-
tion. The temperature rise of Structures A and B inside the 
cavity is 8.62 and 16.57 K, and the thermal resistance (Rth) 
were calculated to be 842 and 1428 K  W−1, respectively. It 
suggests that structure A has a 41% improvement in heat 
dissipation. It is clear that, due to the AlN insulator layer 
and the electroplated copper plate, the thermal energy can 
be more effectively conducted to the heat sink.

4  Conclusions

In summary, we demonstrated continuous-wave green 
VCSELs with the lowest threshold current density of 51.97 A 
 cm−2 and lasing at 524.0 nm. The main factors for achieving 
a low threshold can be summarized as the strong localization 
and high IQE (~ 69.94%) of the self-formed InGaN QDs, and 
the enhancement of interaction between spontaneous emis-
sion and lasing mode by a much short cavity (~ 4.0 λ), with a 
big coupling factor up to 0.094. The thermal characteristic of 
VCSELs were improved by utilizing the AlN material as cur-
rent confinement layer and the electroplated supporting copper 
plate, with a low thermal resistance of 842 K  W−1.
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